
The fully supersymmetric AKNS equations

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1990 J. Phys. A: Math. Gen. 23 1127

(http://iopscience.iop.org/0305-4470/23/7/018)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 01/06/2010 at 10:03

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/23/7
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


1. Phys. A: Math. Gen. 23 (1990) 1127-1136. Printed in the U K  
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Abstract. The general fully supersymmetric approach to the A K N S  method is presented. 
The supersymmetric K d V  and MKdv equations are considered as examples. The supersym- 
metric Backlund transformation is constructed for the supersymmetric KdV equation. 

1. Introduction 

Almost 10 years ago physicists started investigations of the supersymmetric soliton 
equations [l-31. From the mathematical point of view supersymmetry allowed us to 
extend the class of nonlinear partial differential equations solvable by new methods 
such as the Lax pair, Backlund transformation, etc [4-61. Mathematically it amounts 
to incorporating the anticommuting variable of Grassman type together with the usual 
commuting (c-number) variables. The case of extended supersymmetry seems very 
promising for soliton theory. For example, N = 2 extended supersymmetry is charac- 
terised by incorporating two boson and two fermion fields and treats those fields 
equally. After performing the supersymmetrisation and removing the fermionic fields 
we obtain the system of interacting bosonic fields or, in mathematical language, the 
system of interacting partial nonlinear differential equations. We expect that this system 
shares similar properties to the non-supersymmetric system. 

The most important property of the soliton from the field theory point of view is 
its particle-like behaviour. It is natural to ask: is this property preserved in relativistic 
supersymmetric field theory [7,8]? In order to give the affirmative answer one should 
prepare the supersymmetrisation of the given classical soliton theory. However, we 
have no unique prescription of how to do this. What we have is formal and incomplete 
and can be divided into several frameworks such as the geometrical, algebraic or 
fermionic and fully supersymmetric approach. 

In the geometrical framework the soliton equations are considered in the form of 
the Cartan-Maurer equations on the matrix 1-forms belonging to some Lie algebra of 
a Lie group. Then the supersymmetrisation is performed by generalisation of the 
Cartan-Maurer equation to the graded supersymmetric Lie algebra. This method has 
been used in the Ablowitz-Kaup-Newell-Segur (AKNS) [9] representation in which 
the SL(2, C )  group has been changed to OSP(1,2) [lo] and later to OSP( N, 2) groups 
[ l l ] .  This is the consistent mathematical theory but it is not satisfactory from the 
physical point of view. For this generalisation the supersymmetry invariance is broken 
as, for example, in the Korteweg-de Vries equation ( K d v ) .  It is due to the method 
where we add a fermion field ‘by hand’ in the proper mathematical way. 
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A natural way to extend the given equation to a fully supersymmetric system is 
simply to rewrite this equation in terms of the superfields and the covariant derivatives. 
However such a superfield generalisation is not always unique. For example, for the 
Kdv equation this generalisation contains one free parameter [12]. This freedom can 
be restricted assuming an additional condition or conditions on the system. Now it is 
well known that the second Hamiltonian structure of the Kdv equation is connected 
with the Virasoro algebra realised in terms of the Poisson brackets. From the knowledge 
of the supersymmetric extension of the Virasoro algebra and from the supersymmetric 
extension of its second Hamiltonian in the superfield form it is possible to supersym- 
metrise the Kdv [12-171. This manner fixed the mentioned free parameter also. The 
equation obtained is different from the fermionically extended Kdv. 

The Kdv equation generalised in the superfield form possesess the Lax pair but 
how it is connected with the A K N S  representation is the subject of the present paper. 
Here we present two different manners of the fully supersymmetrisation of the A K N S  

approach. In the first we generalise the Cartan-Maurer equation by the supersymmetri- 
sation, e.g. use the superfield in the connection form and by addition of one more 
connection with the opposite parity ‘statistic’ to the original connection. The assump- 
tion of the flatness of our combination of the superconnection gives us the analogue 
of the fully supersymmetric A K N S  equations. In the second way we started our 
considerations from the fully supersymmetric Riccati equations. It is well known that 
the A K N S  system can be written as the system of two Riccati equations called the 
projection representation of A K N S  [18]. The transition from Riccati equations to the 
matrix representation is straightforward and here we supersymmetrise this transition. 
As the result we endow the fully supersymmetric Kdv and mKdV to this representation. 

The advantage ofthis method is the possibility to construct the Backlund transforma- 
tion for the equations under consideration. We use the projective representation of 
the AKNS in this aim and we show that this way is equivalent to the gauge transformation 
of our supersymmetric connection form. 

2. The generalisation of the Cartan-Maurer equation 

The setup of the inverse scattering method of A K N S  is given by the following completely 
integrable Pfaffian system 

- d V = f l V  (1) 
where fl is a traceless 2 x 2 matrix depending on the spectral parameter 7 and on the 
U function of the x and t variables and on the derivatives of U. The integrability of 
(1) requires the vanishing of the 2-form 

dd V = O = d f l  V - fl A fl - V. (2) 
Usually the supersymmetrisation is achieved by replacing a connection 1-form with 

the 1-form which has the value in the graded supersymmetric group. The fermionic 
part of the supersymmetry in this approach is added independently from the bosonic 
part and hence the supersymmetry invariance is broken. We can rescue this invariance 
by the supersymmetrisation of the function U by the use of a superfield in the R form 
and by addition of one more connection form with the opposite parity to R. Indeed 
let us consider the following system of differential supersymmetric equations: 

- d V = f l V + f i  D V  (3) 
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where 0, h are 1-forms depending on the spectral parameter 7) on the superfunction 
q of the x and t variables and on the superderivatives of 4, V is a super Jost function 
and the superderivative is defined by 

a a  
a8 ax 

D=-+B--. 

The integrability of (3 )  requires the vanishing of the 2-form 

d d V = O = d f l V + d f i D v - f l A R V - R ~ h D V  

- h A D ~ I  v - ir A i i ~ v  - ir A D ~ D  v 
-6Ahvx 

where 

a, = S(fl,)fl,  A,, = Nh,,,h, 
if z is odd 
if z is even. 

6(z)  = 

(4) 

Introducing 

Equations (10) and (11) constitute the analogue of the fully supersymmetric AKNS 

representation. By the proper parametrisation of R and h we can obtain the fully 
supersymmetric equations. 

( i )  The fully supersymmetric Kdv equation, first obtained by Manin and Radul 
[19], is 

9, = qxxx + 3 ( q  Dq)x (12) 

q = qo+ 89’ (13) 

where qo is the odd function while q’ is the even function of x and t .  We then have 

where 77 is an arbitrary constant parameter, and 

B = q x x  + 2 7 7 q x  + 4 77 q + 2 9 D q 

Al=8r13+Dqx+2r) Dq 
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(ii) The fully supersymmetric modified Korteveg-de Vries equation introduced by 
Sasaki and Yamanaki [14] is 

q r= -q \%r+3q ,  Dq D q + 3 q  Dq, Dq (20) 

-6=(  0 0  ) d x + ( A 2  O ) d t  
Dq 0 C A2 

where 

Notice that the I-forms R and 6 are graded matrices and hence V = ( u 1  , u ~ ) ~  where 
v I  is the odd superfunction while u2 is even. These 1-forms can always be built in 
1-form by the increasing the dimensionality of the connection and by going to the 
component form of (3). To see it let us use the K d v  equation as an example and let 
us define the 0-form by 

z = (U;, v ; ,  U?, U;) 

u1 = U:+ ev;  = U;+ eo; 
and 1-form h by 

3. The supersymmetric Riccati equation and the supersymmetric projective 
representation of the AKNS 

The Riccati equations which appear in the A K N S  representation are in the following 
form: 

d - r=rr = 2 q r +  R +  K T 2  
d x  

d - 
d t  

(32) 

(33) = r, = B + 2 A T -  CT2 
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where 7 is an arbitrary parameter, R and K are functions of some function q of the 
x and t variable, while A, B, C are the functions of q and their derivatives and also 
the 7 parameter. The integrability of (32) and (33)  gives us the same equations as in 
the AKNS approach. For this reason such a representation is called the projective A K N S  

representation. The transition from the projective representation to its matrix form is 
achieved if we factorise the function r as 

r =  *II*2 .  (34) 

Introducing (34) to (32) and (33) we obtain 

*Ix*2-*1*2x =2.t7*l*2+R*2*2+K*,*I (35 )  

cFl11+2-(CI1+21 = B$2@2+2A4142- C4~1$2* (36) 

Now this system can be split (not uniquely) in such a way to obtain the AKNS 

representation 

* , = ( A  C -A B ) * = w * .  

The integrability of (37) and (38) gives us the partial nonlinear differential equation 
of the function q. For example, the K d v  equation is obtained assuming that 

R = q  K = l  (39) 

B = qxx + 27qx +4q2q + 2q2 (40) 

A = q , + 2 q q + 4 ~ ~  (41) 

C = - 4 ~ ~ - 2 q  (42) 

q,=9xxx+69qx. (43) 

Now we are preparing to supersymmetrise this approach. First let us notice that 
it is possible to write down the fully supersymmetric version of (32) and (33) in terms 
of a superfield as 

T, = 2 7 r +  R +  K r D T +  N DT DT 

TI  = B + A , T + A ,  DT- CT DT+ M DT DT 

(44) 

(45) 

where r, R, N, B, A2,  M are odd functions while K, A, A , ,  C are even functions. 
Notice that our supersymmetric Riccati equations are evidently invariant under the 
supersymmetric transformation 

6 = [(a, - ea,) (46) 

where 6 is a 'small' Grasmann number. 
The integrability of (44) and (45) gives us, among others, the condition 

K N M  = 0. (47) 
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Assuming N = M =0, which will be explained in the next section, the integrability 
condition reduces to 

27B f R, = B, + A, R + A2 DR (48) 

K t  = - C, - 27C + A2 DK - KA, - K DA2 (49) 

KB = A2x - CR (50)  

K DB-2KA2R=AI, -C DR. (51) 

By the proper choice of the 7 dependence of the superfunctions A , ,  A2, B, C and 
their supersymmetric derivatives and by the proper choice of R and K we find the 
following. 

(i) The fully supersymmetric Kdv equation for which 

R = q  K = l  

where B, A, ,  A,, C are defined by (16)-(19) respectively. 
(ii) The fully supersymmetric MKdv equation for which 

R = q  K = - D q  

where B, C, A,,  A2 are defined by (25)-(28) respectively. 

4. The matrix supersymmetric extension of the AKNS representation 

The system of the supersymmetric equations (44) and (45) is the supersymmetric 
projective representation of the AKNS. We now try to obtain its matrix version. Let 
us assume that formula (34) is valid also in this case. From the construction r is an 
odd superfield and therefore we should assume that $, is odd while t+b2 is an even 
superfunction. Introducing such a factorised superfunction r to (44) and (45) with 
N = M = 0 we obtain 

$1x$2- $1$2x = 2 7 $ i $ 2 +  R$2$r+ K$i D$i 

$Jl&z-$Jl$zt  = B $ J ~ $ J ~ + A I $ J I $ J ~ + A Z ( D $ ~ $ ~ +  $1 D+r)-C$i D$i. 

(54) 

( 5 5 )  

Notice that the assumption N = M = 0 is crucial. If we assume this is not true we 
cannot obtain the analogue of (54) and ( 5 5 ) .  We would like to split this system 
analogously as in the non-supersymmetric case. There are many ways to do it. We 
choose this way which reproduces the correct bosonic limit, e.g. gives us (35) and (36). 
We obtain 

$ i X  = 7lLi + R$2 $l,=B$2+A,D$I+h$l (56) 

-$i$2x = 7$lIC12+KLLl w, (57) 

-$,$a =Al+l$2+A2+I D$2-C+, D+1-h$1+2, ( 5 8 )  

where h is an arbitrary (on this level) even superfield. We cannot simply divide (57) 
and (58) by as in the non-supersymmetric case because is the odd superfunction. 
We can conclude only that 
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where g, and g2 are an arbitrary (on this level) odd superfunctions. We fix these 
arbitrary superfunctions assuming the integrability of (59), (60) and (56). This condi- 
tion give us (48)-(51) and additionally 

Rg2 = h x  + Bgi 

gi ,  -27g2-K Dh +2qKAz=g2x - A ~ g i  +A2 D g , .  

(61) 

(62) 

In that way (48)-(51) and (61) and (62) constitue the fully supersymmetric AKNS 

representation. We solved these quations for KdV and M K d v  equations and hence we 
obtained the following matrix AKNS representation. 

(i)  Supersymmetric K d v  equation: 

g , = h = O  g, = 2qR (63) 

(ii) Supersymmetric M K d v  equation: 

h - A ,  ) * + ( A 2  c A2 O)*. 

5. The supersymmetric Backlund transformation 

The Backlund transformation ( BT) is an important tool in the theoretical understanding 
of a certain class of nonlinear equations of physical interest. They are very useful for 
the purpose of generating conservation laws and exact solutions of such equations, 
making use of known solutions as an input in the latter case. For this reason the 
construction of the BT is usually considered to be the ultimate goal. Various methods 
have been suggested for the derivation of this BT. For example, Konno and Wadati 
[20] showed how it is possible to derive it from the projective representation of AKNS 

while Levi er a1 [21] proved that BT can be interpreted as the gauge transformation of 
AKNS. Here we try to supersymmetrise these two methods for the K d v  equation. First 
we derive this transformation from the supersymmetric projective AKNS representation. 
Next we show that the ‘gauge-like’ interpretation of this transformation is consistent 
with the invariance properties of the Riccati equation under this ‘gauge-like’ transfor- 
mation. 

Let us explain the transition from the Riccati equations to the BT and its ‘gauge-like’ 
interpretation in the non-supersymmetric case. This is achieved by the construction 
of a transformation r’ satisying the same equation as (32) but with the new potential 

(70) a x )  = d x )  +fV, 7). 
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In the case of the K d v  equation it is easy to show that 4, defined by 

4 = q -2r, (71)  

where q is some solution of the K d v  equation, is the new solution of the K d v  equation 
if r is the solution of the Riccati equations (32) and (33) .  Now, using (71)  to eliminate 
the r function in the Riccati equations we obtain the BT which for the K d v  equation is 

(3  + U ) ,  = -2772+ ;( 3 - w y  

( w  + &), = 2(wz,+ w,;, + 3:)  - ( w  - 3 ) ( w y x  - G X X )  

(72)  

(73) 

where w, = -9, G X  = -4. 
In order to obtain the 

AKNS is very useful. Here 
transformed to $' by 

transformed function r' the gauge transformation of the 
the gauge transformation of AKNS means that, when CC, is 

d ") * (74)  

then I)' satisfy the same AKNS matrix equations (37) and (38)  with 4 if 

z, + zs = s1 z (75) 

z,+zw= w,z (76) 

where S1 and Wl are the same matrices as in (37)  and (38) in which q is replaced by 
4. The system of equations (75) and (76)  is just the Backlund transformation in the 
matrix form and from the other side it corresponds to the gauge invariance of the 
connection form in the geometrical approach to the A K N S  representation. From the 
gauge invariance of the AKNS representation follows the invariance of the Riccati 
equations. Indeed, under the gauge transformation (74)  it is possible to find new r' 
defined by 

which satisfy the same Riccati equation (32) with 4. Now we try to supersymmetrise 
this approach. We assume that in this case the formula (71)  holds also. In order to 
check the validity of this assumption it is enough to introduce (71) to the supersymmetric 
K d v  equation and observing that 

(78) 

holds if r is the solution of the Riccati equation stemming from the supersymmetric 
K d v  equation. After substituting our formula (71) into the Riccati equation this gives 
us the following BT: 

Tr = r,,, + 3{ q DT, + Dq r, - 2 r ,  DT,} 

(79)  ( W  + G ) ,  = - V ( W  - 3 )  + 5 D(w - 3 )  + 27751 f ( w  - 3 )  D( w - 3 )  

- ( w  - G ) ,  = 2 B  + A l [ 3  - w - 251 + A,[D(3 - U )  - 771 

- C [ + ( W - ; )  D(w -3) - ~ ( 3  - U )  - 5 D ( 3  - ~ ) + 2 5 7 7 ]  (80) 
where q = - w x ,  4 = -&,  5 = .so+ 077, 
B, A I ,  A2 ,  C are defined by (16)-(19) respectively. 

is an arbitrary constant Grasmann number and 
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The same strategy can be applied to the supersymmetric M K d v  equation and instead 
of (71)  we should assume 

r = D-I tan D-’f(q - 4) (81 )  
where D-’ is the inverse operator to D satisfying 

D-l=D[-;=[‘ --x D 

D D - ~  = D - I D  = 1 

where q, 4 are the old and new solutions of M K d v  equation. 
The method of deriving the BT does not look quite geometrical. Usually this BT as 

we mentioned earlier is interpreted as the gauge transformation of the A K N S  representa- 
tion. We show that in the supersymmetric case it is possible to construct such a gauge 
transformation which is consistent with our BT. 

Let us explain how it is possible to define the gauge transformation of our A K N S  

representation in the supersymmetric case. We use the analogy to the non-supersym- 
metric case and assume that $ transforms as 

This reproduces the ‘correct’ bosonic limit. Assuming that $‘ satisfy the same supersym- 
metric matrix AKNS equations (64) and (65) with 4 we get 

and similar formulae for the ‘ t ’  part, where S I ,  2, are the same matrices as in (64) but 
with 4, the ‘-’ over capitals is defined by (6). 

We succeeded in obtaining the supersymmetric analogue of the gauge transforma- 
tion of our AKNS representation or, in other words, the gauge transformation of the 
connection forms. The formulae (85) and (86) constitute also the ‘x’ part of the BT 
in matrix form. For technical reasons it is easier to work with the projective representa- 
tion than with the gauge transformation if we wish to obtain BT. However these two 
approaches are equivalent in the sense that this gauge transformation create new 

which is the solution of the supersymmetric Riccati equation with 4 by the use of the 
explicit form of (85) and (86). Let us mention that we just use this invariance for the 
construction of our Backlund transformation. 

6. Conclusion 

In this paper we show how it is possible to endow the fully supersymmetric soliton 
equations as K d v  and M K d v  in the supersymmetric AKNS representation. Let us mention 
that these equations themselves and their Lax representations are already known in 
literature but the method of their derivation is rather new. Hence the news value of 
the paper is rather limited. On the other hand, this approach can open the way to the 
construction of new supersymmetric equations as, for example, for the fully supersym- 
metric nonlinear Schrodinger equation. 
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